is the scientific study of life,it classifies and describes organisms,their functions,how species comes into existence and their interactions they have with each other and with the natural environment.

Thursday, March 13, 2008

Biological Science


Biology (from Greek: βίος, bio, "life"; and λόγος, logos, "speech" lit. "to talk about life"), also referred to as the biological sciences, is the scientific study of life. Biology examines the structure, function, growth, origin, evolution, and distribution of living things. It classifies and describes organisms, their functions, how species come into existence, and the interactions they have with each other and with the natural environment. Four unifying principles form the foundation of modern biology: cell theory, evolution, genetics and homeostasis.


Biology as a separate science was developed in the nineteenth century, as scientists discovered that organisms shared fundamental characteristics. Biology is now a standard subject of instruction at schools and universities around the world, and over a million papers are published annually in a wide array of biology and medicine journals.


Most biological sciences are specialized disciplines. Traditionally, they are grouped by the type of organism being studied: botany, the study of plants; zoology, the study of animals; and microbiology, the study of microorganisms. The fields within biology are further divided based on the scale at which organisms are studied and the methods used to study them: biochemistry examines the fundamental chemistry of life; molecular biology studies the complex interactions of systems of biological molecules; cellular biology examines the basic building block of all life, the cell; physiology examines the physical and chemical functions of the tissues and organ systems of an organism; and ecology examines how various organisms and their environment interrelate.

Biochemistry


Biochemistry (fromGreek: βίος, bios, "life" and Egyptian kēme, "earth") is the study of the chemical processes in living organisms. It deals with the structure and function of cellular components, such as proteins, carbohydrates, lipids, nucleic acids, and other biomolecules. Chemical biology aims to answer many questions arising from biochemistry by using tools developed within chemical synthesis.
Although there are a vast number of different biomolecules, many are complex and large molecules (called polymers) that are composed of similar repeating subunits (called monomers). Each class of polymeric biomolecule has a different set of subunit types. For example, a protein is a polymer made up of 20 or more amino acids. Biochemistry studies the chemical properties of important biological molecules, like proteins, in particular the chemistry of enzyme-catalyzed reactions.
The biochemistry of cell metabolism and the endocrine system has been extensively described. Other areas of biochemistry include the genetic code (DNA, RNA), protein synthesis, cell membrane transport, and signal transduction.
This article only discusses terrestrial biochemistry (carbon- and water-based), as all the life forms we know are on Earth. Since life forms alive today are hypothesized by most to have descended from the same common ancestor, they have similar biochemistries, even for matters that seem to be essentially arbitrary, such as handedness of various biomolecules. It is unknown whether alternative biochemistries are possible or practical.

Ecology


Ecology (from Greek: οίκος, oikos, "household"; and λόγος, logos, "knowledge") is the scientific study of the distribution and abundance of life and the interactions between organisms and their environment. The environment of an organism includes physical properties, which can be described as the sum of local abiotic factors such as insolation (sunlight), climate, and geology, and biotic factors, which are other organisms that share its habitat.
The word "ecology" is often used more loosely in such terms as social ecology and deep ecology and in common parlance as a synonym for the natural environment or environmentalism. Likewise "ecologic" or "ecological" is often taken in the sense of environmentally friendly.
The term ecology or oekologie was coined by the German biologist Ernst Haeckel in 1866, when he defined it as "the comprehensive science of the relationship of the organism to the environment." Haeckel did not elaborate on the concept, and the first significant textbook on the subject (together with the first university course) was written by the Danish botanist, Eugenius Warming. For this early work, Warming is often identified as the founder of ecology.

Microbiologist


A microbiologist is a scientist who works in the field of biology. They typically hold either a Bachelor of Science degree or Doctoral degree concentrating in microbiology. Microbiologists can be known under different names depending on the field of microbiology they specialize in:



  • Bacteriologists - work in the field of bacteriology and study bacteria.

  • Environmental Microbiologists - work in the field of environmental microbiology and study microbial processes in the environment.

  • Food Microbiologists - work in the food industry and study pathogenic microorganisms that cause foodborne illness and spoilage.

  • Industrial Microbiologists - generally work in field of biotechnology and study microorganisms that produce useful products.

  • Medical Microbiologists - medical practitioners (doctors) who have chosen to specialize in the diagnosis and treatment of microbial diseases in patients.

  • Mycologists - work in the field of mycology and study fungi.

  • Protozoologists - work in the field of protozoology and study protists.

  • Virologists - work in the field of virology and study viruses

  • Microbial Epidemiologists - study the role of microorganisms in health and illness.

Microbiology

Microbiology is the study of microorganisms, which are unicellular or cell-cluster microscopic organisms. This includes eukaryotes such as fungi and protists, and prokaryotes such as bacteria and certain algae. Viruses, though not strictly classed as living organisms, are also studied.Microbiology is a broad term which includes many branches like virology, mycology, parasitology and others. A person who specializes in the area of microbiology is a microbiologist.
Although much is now known in the field of microbiology, advances are being made regularly. We have probably only studied about 1% of all of the microbe species on Earth.Thus, despite the fact that over three hundred years have passed since the discovery of microbes, the field of microbiology could be said to be in its infancy relative to other biological disciplines such as zoology, botany and entomology.

History
Pre-Microbiology
The existence of microorganisms was hypothesized for many centuries before their actual discovery in the 17th century. The first theories on microorganisms was made by Roman scholar Marcus Terentius Varro in a book titled On Agriculture in which he warns against locating a homestead in the vicinity of swamps:

...and because there are bred certain minute creatures which cannot be seen by the eyes, which float in the air and enter the body through the mouth and nose and there cause serious diseases.

This passage seems to indicate that the ancients were aware of the possibility that diseases could be srpead by yet unseen organisms.
In The Canon of Medicine (1020), Abū Alī ibn Sīnā (Avicenna) stated that bodily secretion is contaminated by foul foreign earthly bodies before being infected.He also hypothesized on the contagious nature of tuberculosis and other infectious diseases, and used quarantine as a means of limiting the spread of contagious diseases.
When the Black Death bubonic plague reached al-Andalus in the 14th century, Ibn Khatima hypothesized that infectious diseases are caused by "minute bodies" which enter the human body and cause disease.
In 1546 Girolamo Fracastoro proposed that epidemic diseases were caused by transferable seedlike entities that could transmit infection by direct or indirect contact or even without contact over long distances.
All these early claims about the existence of microorganisms were speculative in nature and not based on any data or science. Microorganisms were neither proven, observed, and correctly and accurately described until the 17th century. The reason for this was that all these early inquiries lacked the most fundamental tool in order for microbiology and bacteriology to exist as a science, and that was the microscope.

Electromagnetic Radiation


Electromagnetic (EM) radiation, also called light even though it is not always visible, is a self-propagating wave in space with electric and magnetic components. These components oscillate at right angles to each other and to the direction of propagation, and are in phase with each other. Electromagnetic radiation is classified into types according to the frequency of the wave: these types include, in order of increasing frequency, radio waves, microwaves, terahertz radiation, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.

Theory
Electromagnetic waves were first postulated by James Clerk Maxwell and subsequently confirmed by Heinrich Hertz. Maxwell derived a wave form of the electric and magnetic equations, revealing the wave-like nature of electric and magnetic fields, and their symmetry. Because the speed of EM waves predicted by the wave equation coincided with the measured speed of light, Maxwell concluded that light itself is an EM wave.
According to Maxwell's equations, a time-varying electric field generates a magnetic field and vice versa. Therefore, as an oscillating electric field generates an oscillating magnetic field, the magnetic field in turn generates an oscillating electric field, and so on. These oscillating fields together form an electromagnetic wave.
A quantum theory of the interaction between electromagnetic radiation and matter such as electrons is described by the theory of quantum electrodynamics.

X-Ray (unit of measure and exposure)


An X-ray (or Röntgen ray) is a form of electromagnetic radiation with a wavelength in the range of 10 to 0.01 nanometers, corresponding to frequencies in the range 30 PHz to 30 EHz. They are longer than Gamma rays but shorter than UV rays. X-rays are primarily used for diagnostic radiography and crystallography. X-rays are a form of ionizing radiation and as such can be dangerous. In many languages it is called Röntgen radiation after one of the first investigators of the X-rays, Wilhelm Conrad Rontgen.

Unit of measure and exposure
The rem is the traditional unit of dose equivalent. This describes the Energy delivered by γ or X-radiation (indirectly ionizing radiation) for humans. The SI counterpart is the sievert (Sv). One sievert is equal to 100 rem. Because the rem is a relatively large unit, typical equivalent dose is measured in millirem (mrem) - 1/1000 rem, or in microsievert (μSv) - 1/1000000 Sv -, whereby 1 mrem equals 10 μSv.
The average person living in the United States is exposed to approximately 150 mrem annually from background sources alone.
Reported dosage due to dental X-rays seems to vary significantly. Depending on the source, a typical dental X-ray of a human results in an exposure of perhaps, 3, 40, 300 or as many as 900 mrems (30 to 9,000 μSv).

Chemotherapy


Chemotherapy, in its most general sense, refers to treatment of disease by chemicals that kill cells, specifically those of micro-organisms or cancer. In popular usage, it usually refers to antineoplastic drugs used to treat cancer or the combination of these drugs into a standardized treatment regimen.
In its non-oncological use, the term may also refer to antibiotics (antibacterial chemotherapy). In that sense, the first modern chemotherapeutic agent was Paul Ehrlich's arsphenamine, an arsenic compound discovered in 1909 and used to treat syphilis. This was later followed by sulfonamides discovered by Domagk and penicillin discovered by Alexander Fleming.
Other uses of cytostatic chemotherapy agents (including the ones mentioned below) are the treatment of autoimmune diseases such as multiple sclerosis and rheumatoid arthritis and the suppression of transplant rejections.

Cancer


Cancer is a group of diseases in which cells are aggressive (grow and divide without respect to normal limits), invasive (invade and destroy adjacent tissues), and sometimes metastatic (spread to other locations in the body). These three malignant properties of cancers differentiate them from benign tumors, which are self-limited in their growth and don't invade or metastasize (although some benign tumor types are capable of becoming malignant). Cancer may affect people at all ages, even fetuses, but risk for the more common varieties tends to increase with age. Cancer causes about 13% of all deaths. According to the American Cancer Society, 7.6 million people died from cancer in the world during 2007.Apart from humans, forms of cancer may affect other animals and plants.

Nearly all cancers are caused by abnormalities in the genetic material of the transformed cells. These abnormalities may be due to the effects of carcinogens, such as tobacco smoke, radiation, chemicals, or infectious agents. Other cancer-promoting genetic abnormalities may be randomly acquired through errors in DNA replication, or are inherited, and thus present in all cells from birth. Complex interactions between carcinogens and the host genome may explain why only some develop cancer after exposure to a known carcinogen. New aspects of the genetics of cancer pathogenesis, such as DNA methylation, and microRNAs are increasingly being recognized as important.

Genetic abnormalities found in cancer typically affect two general classes of genes. Cancer-promoting oncogenes are often activated in cancer cells, giving those cells new properties, such as hyperactive growth and division, protection against programmed cell death, loss of respect for normal tissue boundaries, and the ability to become established in diverse tissue environments. Tumor suppressor genes are often inactivated in cancer cells, resulting in the loss of normal functions in those cells, such as accurate DNA replication, control over the cell cycle, orientation and adhesion within tissues, and interaction with protective cells of the immune system.
Cancer is usually classified according to the tissue from which the cancerous cells originate, as well as the normal cell type they most resemble. These are location and histology, respectively. A definitive diagnosis usually requires the histologic examination of a tissue biopsy specimen by a pathologist, although the initial indication of malignancy can be symptoms or radiographic imaging abnormalities. Most cancers can be treated and some cured, depending on the specific type, location, and stage. Once diagnosed, cancer is usually treated with a combination of surgery, chemotherapy and radiotherapy. As research develops, treatments are becoming more specific for different varieties of cancer. There has been significant progress in the development of targeted therapy drugs that act specifically on detectable molecular abnormalities in certain tumors, and which minimize damage to normal cells. The prognosis of cancer patients is most influenced by the type of cancer, as well as the stage, or extent of the disease. In addition, histologic grading and the presence of specific molecular markers can also be useful in establishing prognosis, as well as in determining individual treatments.

DNA Damage

DNA can be damaged by many different sorts of mutagens, which are agents that change the DNA sequence. These agents include oxidizing agents, alkylating agents and also high-energy electromagnetic radiation such as ultraviolet light and X-rays. The type of DNA damage produced depends on the type of mutagen. For example, UV light mostly damages DNA by producing thymine dimers, which are cross-links between adjacent pyrimidine bases in a DNA strand.On the other hand, oxidants such as free radicals or hydrogen peroxide produce multiple forms of damage, including base modifications, particularly of guanosine, as well as double-strand breaks.It has been estimated that in each human cell, about 500 bases suffer oxidative damage per day.Of these oxidative lesions, the most dangerous are double-strand breaks, as these are difficult to repair and can produce point mutations, insertions and deletions from the DNA sequence, as well as chromosomal translocations.
Many mutagens intercalate into the space between two adjacent base pairs. Intercalators are mostly aromatic and planar molecules, and include ethidium, daunomycin, doxorubicin and thalidomide. In order for an intercalator to fit between base pairs, the bases must separate, distorting the DNA strands by unwinding of the double helix. These structural changes inhibit both transcription and DNA replication, causing toxicity and mutations. As a result, DNA intercalators are often carcinogens, with benzopyrene diol epoxide, acridines, aflatoxin and ethidium bromide being well-known examples.Nevertheless, due to their properties of inhibiting DNA transcription and replication, they are also used in chemotherapy to inhibit rapidly-growing cancer cells.

Mutations


In biology, mutations are changes to the nucleotide sequence of the genetic material of an organism. Mutations can be caused by copying errors in the genetic material during cell division, by exposure to ultraviolet or ionizing radiation, chemical mutagens, or viruses, or can occur deliberately under cellular control during processes such as hypermutation. In multicellular organisms, mutations can be subdivided into germ line mutations, which can be passed on to descendants, and somatic mutations, which cannot be transmitted to descendants in animals. Plants sometimes can transmit somatic mutations to their descendants asexually or sexually (in case when flower buds develop in somatically mutated part of plant). A new mutation that was not inherited from either parent is called a de novo mutation.
Mutations create variations in the gene pool, and the less favorable (or deleterious) mutations are reduced in frequency in the gene pool by natural selection, while more favorable (beneficial or advantageous) mutations tend to accumulate, resulting in evolutionary change. For example, a butterfly may produce offspring with a new mutation. Many times new mutations are harmful; a new mutation might change the color of one of the butterfly's offspring, making it harder (or easier) for predators to see. If this color change is an advantage, the chances of this butterfly surviving and producing its own offspring are a little better, and over time the number of butterflies with this mutation may form a larger percentage of the population.
Neutral mutations are defined as mutations whose effects do not influence the fitness of either the species or the individuals who make up the species. These can accumulate over time due to genetic drift. The overwhelming majority of mutations have no significant effect, since DNA repair is able to mend most changes before they become permanent mutations, and many organisms have mechanisms for eliminating otherwise permanently mutated somatic cells.

Genes and Genomes


Genomic DNA is located in the cell nucleus of eukaryotes, as well as small amounts in mitochondria and chloroplasts. In prokaryotes, the DNA is held within an irregularly shaped body in the cytoplasm called the nucleoid. The genetic information in a genome is held within genes, and the complete set of this information in an organism is called its genotype. A gene is a unit of heredity and is a region of DNA that influences a particular characteristic in an organism. Genes contain an open reading frame that can be transcribed, as well as regulatory sequences such as promoters and enhancers, which control the transcription of the open reading frame.
In many species, only a small fraction of the total sequence of the genome encodes protein. For example, only about 1.5% of the human genome consists of protein-coding exons, with over 50% of human DNA consisting of non-coding repetitive sequences. The reasons for the presence of so much non-coding DNA in eukaryotic genomes and the extraordinary differences in genome size, or C-value, among species represent a long-standing puzzle known as the "C-value enigma." However, DNA sequences that do not code protein may still encode functional non-coding RNA molecules, which are involved in the regulation of gene expression.

T7 RNA polymerase (blue) producing a mRNA (green) from a DNA template (orange).
Some non-coding DNA sequences play structural roles in chromosomes. Telomeres and centromeres typically contain few genes, but are important for the function and stability of chromosomes. An abundant form of non-coding DNA in humans are pseudogenes, which are copies of genes that have been disabled by mutation.These sequences are usually just molecular fossils, although they can occasionally serve as raw genetic material for the creation of new genes through the process of gene duplication and divergence.

Transcription and translation
Further information: Genetic code, Transcription (genetics), Protein biosynthesis
A gene is a sequence of DNA that contains genetic information and can influence the phenotype of an organism. Within a gene, the sequence of bases along a DNA strand defines a messenger RNA sequence, which then defines one or more protein sequences. The relationship between the nucleotide sequences of genes and the amino-acid sequences of proteins is determined by the rules of translation, known collectively as the genetic code. The genetic code consists of three-letter 'words' called codons formed from a sequence of three nucleotides (e.g. ACT, CAG, TTT).
In transcription, the codons of a gene are copied into messenger RNA by RNA polymerase. This RNA copy is then decoded by a ribosome that reads the RNA sequence by base-pairing the messenger RNA to transfer RNA, which carries amino acids. Since there are 4 bases in 3-letter combinations, there are 64 possible codons (43 combinations). These encode the twenty standard amino acids, giving most amino acids more than one possible codon. There are also three 'stop' or 'nonsense' codons signifying the end of the coding region; these are the TAA, TGA and TAG codons.

DNA


Deoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic instructions used in the development and functioning of all known living organisms. The main role of DNA molecules is the long-term storage of information. DNA is often compared to a set of blueprints, since it contains the instructions needed to construct other components of cells, such as proteins and RNA molecules. The DNA segments that carry this genetic information are called genes, but other DNA sequences have structural purposes, or are involved in regulating the use of this genetic information.
Chemically, DNA is a long polymer of simple units called nucleotides, with a backbone made of sugars and phosphate groups joined by ester bonds. Attached to each sugar is one of four types of molecules called bases. It is the sequence of these four bases along the backbone that encodes information. This information is read using the genetic code, which specifies the sequence of the amino acids within proteins. The code is read by copying stretches of DNA into the related nucleic acid RNA, in a process called transcription.
Within cells, DNA is organized into structures called chromosomes. These chromosomes are duplicated before cells divide, in a process called DNA replication. Eukaryotic organisms such as animals, plants, and fungi store their DNA inside the cell nucleus, while in prokaryotes such as bacteria it is found in the cell's cytoplasm. Within the chromosomes, chromatin proteins such as histones compact and organize DNA. These compact structures guide the interactions between DNA and other proteins, helping control which parts of the DNA are transcribed.

Cell Biology


Cell biology (also called cellular biology or formerly cytology, from the Greek kytos, "container") is an academic discipline that studies cells – their physiological properties, their structure, the organelles they contain, interactions with their environment, their life cycle, division and death. This is done both on a microscopic and molecular level. Cell biology research extends to both the great diversity of single-celled organisms like bacteria and the many specialized cells in multicellular organisms like humans.
Knowing the composition of cells and how cells work is fundamental to all of the biological sciences. Appreciating the similarities and also differences between cell types is particularly important to the fields of cell and molecular biology. These fundamental similarities and differences provide a unifying theme, allowing the principles learned from studying one cell type to be extrapolated and generalized to other cell types. Research in cell biology is closely related to genetics, biochemistry, molecular biology and developmental biology.

Molecular Genetics


Although chromosomes were known to contain genes, chromosomes were composed of both protein and DNA — it was unknown which was critical for heredity or how the process occurred. In 1928, Frederick Griffith published his discovery of the phenomenon of transformation (see Griffith's experiment); sixteen years later, in 1944, Oswald Theodore Avery, Colin McLeod and Maclyn McCarty used this phenomenon to isolate and identify the molecule responsible for transformation as DNA.The Hershey-Chase experiment in 1952 identified DNA (rather than protein) as the genetic material of viruses, further evidence that DNA was the molecule responsible for inheritance.
James D. Watson and Francis Crick resolved the structure of DNA in 1953, using the X-ray crystallography work of Rosalind Franklin that indicated the molecule had a helical structure. Their double-helix model paired a sequence of nucleotides with a "complement" on the other strand. This structure not only provided a physical explanation for information contained within the order of the nucleotides, but also a physical mechanism for duplication through separation of strands and the reconstruction of a partner strand based on the nucleotide pairings. Although the structure explained the process of inheritance, it was still unknown how DNA influenced the behavior of cells. In the following years many scientists sought to understand how DNA controls the process of protein production within ribosomes, eventually discovering the transcription of DNA into messenger RNA and uncovering the genetic code which links the nucleotide sequence of messenger RNA to the amino acid sequence of protein.
With this molecular understanding of DNA, an explosion of research based on this understanding of the molecular nature of DNA became possible. The development of chain-termination DNA sequencing in 1977 enabled the determination of nucleotide sequences on DNA, and the PCR method developed by Kary Banks Mullis in 1983 allowed the isolation and amplification of arbitrary segments of DNA. These and other techniques, through the pooled efforts of the Human Genome Project and parallel private effort by Celera Genomics, culminated in the sequencing of the human genome in 2001.

Genetics

Genetics, a discipline of biology, is the science of heredity and variation in living organisms.Knowledge of the inheritance of characteristics has been implicitly used since prehistoric times for improving crop plants and animals through selective breeding. However, the modern science of genetics, which seeks to understand the mechanisms of inheritance, only began with the work of Gregor Mendel in the mid-1800s. Although he did not know the physical basis for heredity, Mendel observed that inheritance is fundamentally a discrete process with specific traits that are inherited in an independent manner — these basic units of inheritance are now called genes.
Following the rediscovery of Mendel's observations in the early 1900s, research in 1910s yielded the first physical understanding of inheritance — that genes are arranged linearly along large cellular structures called chromosomes. By the 1950s it was understood that the core of a chromosome was a long molecule called DNA and genes existed as linear sections within the molecule. A single strand of DNA is a chain of four types of nucleotides; hereditary information is contained within the sequence of these nucleotides. Solved by Watson and Crick in 1953, DNA's three-dimensional structure is a double-stranded helix, with the nucleotides on each strand complementary to each other. Each strand acts as a template for synthesis of a new partner strand, providing the physical mechanism for the inheritance of information.
The sequence of nucleotides in DNA is used to produce specific sequences of amino acids, creating proteins — a correspondence known as the "genetic code". This sequence of amino acids in a protein determines how it folds into a three-dimensional structure, this structure is in turn responsible for the protein's function. Proteins are responsible for almost all functional roles in the cell. A change to DNA sequence can change a protein's structure and behavior, and this can have dramatic consequences in the cell and on the organism as a whole.
Although genetics plays a large role in determining the appearance and behavior of organisms, it is the interaction of genetics with the environment an organism experiences that determines the ultimate outcome. For example, while genes play a role in determining a person's height, the nutrition and health that person experiences in childhood also have a large effect.

Foundations of Modern Biology

There are four unifying principles of biology:

Cell theory
. All living organisms are made of at least one cell, the basic unit of function in all organisms. In addition, the core mechanisms and chemistry of all cells in all organisms are similar, and cells emerge only from preexisting cells that multiply through cell division.
Evolution. Through natural selection and genetic drift, a population's inherited traits change from generation to generation.
Gene theory. A living organism's traits are encoded in DNA, the fundamental component of genes. In addition, traits are passed on from one generation to the next by way of these genes. All information flows from the genotype to the phenotype, the observable physical or biochemical characteristics of the organism. Although the phenotype expressed by the gene may adapt to the environment of the organism, that information is not transferred back to the genes. Only through the process of evolution do genes change in response to the environment.
Homeostasis. The physiological processes that allow an organism to maintain its internal environment notwithstanding its external environment.

Cell Theory


The cell is the fundamental unit of life. Cell theory states that all living things are composed of one or more cells, or the secreted products of those cells, for example, shell and bone. Cells arise from other cells through cell division, and in multicellular organisms, every cell in the organism's body is produced from a single cell in a fertilized egg. Furthermore, the cell is considered to be the basic part of the pathological processes of an organism.

Gene Theory


Biological form and function are created from and passed on to the next generation by genes, which are the primary units of inheritance. Physiological adaptation to an organism's environment cannot be coded into its genes and cannot be inherited by its offspring . Remarkably, widely different organisms, including bacteria, plants, animals, and fungi, all share the same basic machinery that copies and transcribes DNA into proteins. For example, bacteria with inserted human DNA will correctly yield the corresponding human protein.
The total complement of genes in an organism or cell is known as its genome which is stored on one or more chromosomes. A chromosome is a single, long DNA strand on which thousands of genes, depending on the organism, are encoded. When a gene is active, the DNA code is transcribed into an RNA copy of the gene's information. A ribosome then translates the RNA into a structural protein or catalytic protein.

Homeostasis


Homeostasis is the ability of an open system to regulate its internal environment to maintain a stable condition by means of multiple dynamic equilibrium adjustments controlled by interrelated regulation mechanisms. All living organisms, whether unicellular or multicellular, exhibit homeostasis. Homeostasis exists at the cellular level, for example cells maintain a stable internal acidity (pH); and at the level of the organism, for example warm-blooded animals maintain a constant internal body temperature. Homeostasis is a term that is also used in association with ecosystems, for example, the atmospheric concentration of carbon dioxide on Earth has been regulated by the concentration of plant life on Earth because plants remove more carbon dioxide from the atmosphere during the daylight hours than they emit to the atmosphere at night. Tissues and organs can also maintain homeostasis.

Structural

Schematic of typical animal cell depicting the various organelles and structures.
Main articles: Molecular biology, Cell biology, Genetics, and Developmental biology
Molecular biology is the study of biology at a molecular level. This field overlaps with other areas of biology, particularly with genetics and biochemistry. Molecular biology chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interrelationship of DNA, RNA, and protein synthesis and learning how these interactions are regulated.
Cell biology studies the physiological properties of cells, as well as their behaviors, interactions, and environment. This is done both on a microscopic and molecular level. Cell biology researches both single-celled organisms like bacteria and specialized cells in multicellular organisms like humans.
Understanding cell composition and how they function is fundamental to all of the biological sciences. Appreciating the similarities and differences between cell types is particularly important in the fields of cell and molecular biology. These fundamental similarities and differences provide a unifying theme, allowing the principles learned from studying one cell type to be extrapolated and generalized to other cell types.
Genetics is the science of genes, heredity, and the variation of organisms. Genes encode the information necessary for synthesizing proteins, which in turn play a large role in influencing (though, in many instances, not completely determining) the final phenotype of the organism. In modern research, genetics provides important tools in the investigation of the function of a particular gene, or the analysis of genetic interactions. Within organisms, genetic information generally is carried in chromosomes, where it is represented in the chemical structure of particular DNA molecules.
Developmental biology studies the process by which organisms grow and develop. Originating in embryology, modern developmental biology studies the genetic control of cell growth, differentiation, and "morphogenesis," which is the process that gives rise to tissues, organs, and anatomy. Model organisms for developmental biology include the round worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, the zebrafish Brachydanio rerio, the mouse Mus musculus, and the weed Arabidopsis thaliana.

Physiological

Physiology studies the mechanical, physical, and biochemical processes of living organisms by attempting to understand how all of the structures function as a whole. The theme of "structure to function" is central to biology. Physiological studies have traditionally been divided into plant physiology and animal physiology, but the principles of physiology are universal, no matter what particular organism is being studied. For example, what is learned about the physiology of yeast cells can also apply to human cells. The field of animal physiology extends the tools and methods of human physiology to non-human species. Plant physiology also borrows techniques from both fields.
Anatomy is an important branch of physiology and considers how organ systems in animals, such as the nervous, immune, endocrine, respiratory, and circulatory systems, function and interact. The study of these systems is shared with medically oriented disciplines such as neurology and immunology.

Evolution


Evolution is concerned with the origin and descent of species, as well as their change over time, and includes scientists from many taxonomically-oriented disciplines. For example, it generally involves scientists who have special training in particular organisms such as mammalogy, ornithology, botany, or herpetology, but use those organisms as systems to answer general questions about evolution. Evolutionary biology is mainly based on paleontology, which uses the fossil record to answer questions about the mode and tempo of evolution, as well as the developments in areas such as population genetics and evolutionary theory. In the 1980s, developmental biology re-entered evolutionary biology from its initial exclusion from the modern synthesis through the study of evolutionary developmental biology. Related fields which are often considered part of evolutionary biology are phylogenetics, systematics, and taxonomy.
Up into the 19th century, it was believed that life forms were being continuously created under certain conditions (see spontaneous generation). This misconception was challenged by William Harvey's diction that "all life [is] from [an] egg" (from the Latin "Omne vivum ex ovo"), a foundational concept of modern biology. It simply means that there is an unbroken continuity of life from its initial origin to the present time.

A group of organisms shares a common descent if they share a common ancestor. All organisms on the Earth have been and are descended from a common ancestor or an ancestral gene pool. This last universal common ancestor of all organisms is believed to have appeared about 3.5 billion years ago. Biologists generally regard the universality of the genetic code as definitive evidence in favor of the theory of universal common descent (UCD) for all bacteria, archaea, and eukaryotes.

The two major traditional taxonomically-oriented disciplines are botany and zoology. Botany is the scientific study of plants. Botany covers a wide range of scientific disciplines that study the growth, reproduction, metabolism, development, diseases, and evolution of plant life. Zoology involves the study of animals, including the study of their physiology within the fields of anatomy and embryology. The common genetic and developmental mechanisms of animals and plants is studied in molecular biology, molecular genetics, and developmental biology. The ecology of animals is covered under behavioral ecology and other fields.

Taxonomy

Classification is the province of the disciplines of systematics and taxonomy. Taxonomy places organisms in groups called taxa, while systematics seeks to define their relationships with each other. This classification technique has evolved to reflect advances in cladistics and genetics, shifting the focus from physical similarities and shared characteristics to phylogenetics.
Traditionally, living things have been divided into five kingdoms:
  • Monera --
  • Protista --
  • Fungi --
  • Plantae --
  • Animalia
    However, many scientists now consider this five-kingdom system to be outdated. Modern alternative classification systems generally begin with the three-domain system:
  • Archaea (originally Archaebacteria) --
  • Bacteria (originally Eubacteria) --
  • Eukarya
    These domains reflect whether the cells have nuclei or not, as well as differences in the cell exteriors.
    Further, each kingdom is broken down continuously until each species is separately classified:
  • Kingdom
  • Phylum
  • Class
  • Order
  • Family
  • Genus
  • Species
    The scientific name of an organism is obtained from its genus and species. For example, humans would be listed as Homo sapiens. Homo would be the genus and sapiens is the species. Whenever writing the scientific name of an organism, it is proper to capitalize the first letter in the genus and put all of the species in lowercase; in addition the entire term would be put in italics or underlined. The term used for classification is called taxonomy.

There is also a series of intracellular parasites that are progressively "less alive" in terms of metabolic activity:
Viruses -- Viroids -- Prions
The dominant classification system is called Linnaean taxonomy, which includes ranks and binomial nomenclature. How organisms are named is governed by international agreements such as the International Code of Botanical Nomenclature (ICBN), the International Code of Zoological Nomenclature (ICZN), and the International Code of Nomenclature of Bacteria (ICNB). A fourth Draft BioCode was published in 1997 in an attempt to standardize naming in these three areas, but it has yet to be formally adopted. The Virus International Code of Virus Classification and Nomenclature (ICVCN) remains outside the BioCode.

Biogeography

Biogeography is the study of the distribution of biodiversity over space and time. It aims to reveal where organisms live, at what abundance, and why.
The patterns of species distribution at this level can usually be explained through a combination of historical factors such as speciation, extinction, continental drift, glaciation (and associated variations in sea level, river routes, and so on), and river capture, in combination with the area and isolation of landmasses (geographic constraints) and available energy supplies.

History
The scientific theory of biogeography grows out of the work of Alfred Russel Wallace and other early evolutionary scientists. Wallace studied the distribution of flora and fauna in the Malay Archipelago in the 19th century. With the exception of Wallace and a few others, prior to the publication of The Theory of Island Biogeography by Robert MacArthur and E.O. Wilson in 1967 the field of biogeography was seen as a primarily historical one, and as such the field was seen as a purely descriptive one.
MacArthur and Wilson changed this perception, and showed that the species richness of an area could be predicted in terms of such factors as habitat area, immigration rate and extinction rate. This gave rise to an interest in island biogeography. The application of island biogeography theory to habitat fragments spurred the development of the fields of conservation biology and landscape ecology.Biogeography has been expanded by the development of molecular systematics, creating a new discipline known as phylogeography. This development allowed scientists to test theories about the origin and dispersal of populations, such as island endemics. For example, while classic biogeographers were able to speculate about the origins of species in the Hawaiian Islands, phylogeography allows them to test theories of relatedness between these populations and putative source populations in Asia and North America.

Behaviorism

Behaviorism or Behaviourism, also called the learning perspective, is a philosophy of psychology based on the proposition that all things which organisms do — including acting, thinking and feeling—can and should be regarded as behaviors.The school of psychology maintains that behaviors as such can be described scientifically without recourse either to internal physiological events or to hypothetical constructs such as the mind. Behaviorism comprises the position that all theories should have observational correlates but that there are no philosophical differences between publicly observable processes (such as actions) and privately observable processes (such as thinking and feeling).
From early psychology in the 19th century, the behaviorist school of thought ran concurrently and shared commonalities with the psychoanalytic and Gestalt movements in psychology into the 20th century; but also differed from the mental philosophy of the Gestalt psychologists in critical ways.Its main influences were Ivan Pavlov, who investigated classical conditioning, Edward Lee Thorndike, John B. Watson who rejected introspective methods and sought to restrict psychology to experimental methods, and B.F. Skinner who conducted research on operant conditioning.
Versions
There is no classification generally agreed upon, but some titles given to the various branches of behaviorism include:

Classical: The behaviorism of Watson; the objective study of behavior; no mental life, no internal states; thought is covert speech.
Methodological: The objective study of third-person behavior; the data of psychology must be inter-subjectively verifiable; no theoretical prescriptions. It has been absorbed into general experimental and cognitive psychology.
Radical: Skinner's behaviorism; is considered radical since it expands behavioral principles to processes within the organism; in contrast to methodological behaviorism; not mechanistic or reductionist; hypothetical (mentalistic) internal states are not considered causes of behavior, phenomena must be observable at least to the individual experiencing them. Willard Van Orman Quine used many of radical behaviorism's ideas in his study of knowing and language.
Logical: Established by Oxford philosopher Gilbert Ryle in his book The Concept of Mind (1949).
Teleological: Post-Skinnerian, purposive, close to microeconomics.
Theoretical: Post-Skinnerian, accepts observable internal states ("within the skin" once meant "unobservable", but with modern technology we are not so constrained); dynamic, but eclectic in choice of theoretical structures, emphasizes parsimony.
Biological: Post-Skinnerian, centered on perceptual and motor modules of behavior, theory of behavior systems.
Inter behaviorism: Founded by J. R. Kantor before Skinner's writings and currently worked by L. Hayes; E. Ribes; and S. Bijou. centered in the inter behavior of organisms, field theory of behavior; emphasis on human behavior.

Wednesday, March 12, 2008

Behavior

Behavior or behaviour (see spelling differences) refers to the actions or reactions of an object or organism, usually in relation to the environment. Behavior can be conscious or unconscious, overt or covert, and voluntary or involuntary. In animals, behavior is controlled by the endocrine system and the nervous system. The complexity of the behavior of an organism is related to the complexity of its nervous system. Generally, organisms with complex nervous systems have a greater capacity to learn new responses and thus adjust their behavior. Human behavior (and that of other organisms and mechanisms) can be common, unusual, acceptable, or unacceptable. Humans evaluate the acceptability of behavior using social norms and regulate behavior by means of social control. In sociology, behavior is considered as having no meaning, being not directed at other people and thus is the most basic human action. Animal behavior is studied in comparative psychology, ethology, behavioral ecology and sociobiology.
Ronald J. Konopka and Seymour Benzer of Caltech were the first to establish the genetic basis of behavior, when they isolated three circadian rhythm mutants in Drosophila melanogaster which were later mapped to a single gene .

Ethology

Ethology (from Greek: ήθος, ethos, "custom"; and λόγος, logos, "knowledge") is the scientific study of animal behavior, and a branch of zoology (not be confused with ethnology).
Although many naturalists have studied aspects of animal behavior through the centuries, the modern science of ethology is usually considered to have arisen as a discrete discipline with the work in the 1920s of Dutch biologist Nikolaas Tinbergen and Austrian biologist Konrad Lorenz. Ethology is a combination of laboratory and field science, with strong ties to certain other disciplines — e.g., neuroanatomy, ecology, evolution. Ethologists are typically interested in a behavioral process rather than in a particular animal group and often study one type of behavior (e.g., aggression) in a number of unrelated animals.
The desire to understand the animal world has made ethology a rapidly growing field, and since the turn of the 21st century, many prior understandings related to diverse fields such as animal communication, personal symbolic name use, animal emotions, animal culture and learning, and even sexual conduct, long thought to be well understood, have been revolutionized, as have new fields such as neuroethology.

Etymology
The term "ethology" is derived from the Greek word "èthos" (ήθος), meaning "character". Other words derived from the Greek word "ethos" include "ethics" and "ethical". The term was first popularized in English by the American myrmecologist William Morton Wheeler in 1902. (An earlier, slightly different sense of the term was proposed by John Stuart Mill in his 1843 System of Logic. He recommended the development of a new science, "ethology," whose purpose would be the explanation of individual and national differences in character, on the basis of associationistic psychology. This use of the word was never adopted.)

Ecology

Ecology (from Greek: οίκος, oikos, "household"; and λόγος, logos, "knowledge") is the scientific study of the distribution and abundance of life and the interactions between organisms and their environment. The environment of an organism includes physical properties, which can be described as the sum of local abiotic factors such as insolation (sunlight), climate, and geology, and biotic factors, which are other organisms that share its habitat.
The word "ecology" is often used more loosely in such terms as social ecology and deep ecology and in common parlance as a synonym for the natural environment or environmentalism. Likewise "ecologic" or "ecological" is often taken in the sense of environmentally friendly.
The term ecology or oekologie was coined by the German biologist Ernst Haeckel in 1866, when he defined it as "the comprehensive science of the relationship of the organism to the environment." Haeckel did not elaborate on the concept, and the first significant textbook on the subject (together with the first university course) was written by the Danish botanist, Eugenius Warming. For this early work, Warming is often identified as the founder of ecology.

Scope
Ecology is usually considered a branch of biology, the general science that studies living organisms. Organisms can be studied at many different levels, from proteins and nucleic acids (in biochemistry and molecular biology), to cells (in cellular biology), to individuals (in botany, zoology, and other similar disciplines), and finally at the level of populations, communities, and ecosystems, to the biosphere as a whole; these latter strata are the primary subjects of ecological inquiry. Ecology is a multi-disciplinary science. Because of its focus on the higher levels of the organization of life on earth and on the interrelations between organisms and their environment, ecology draws heavily on many other branches of science, especially geology and geography, meteorology, pedology, genetics, chemistry, and physics. Thus, ecology is considered by some to be a holistic science, one that over-arches older disciplines such as biology which in this view become sub-disciplines contributing to ecological knowledge. In support of viewing ecology as a subject in its own right as opposed to a sub-discipline of biology, Robert Ulanowicz stated that "The emerging picture of ecosystem behavior does not resemble the worldview imparted by an extrapolation of conceptual trends established in other sciences."
Agriculture, fisheries, forestry, medicine and urban development are among human activities that would fall within Krebs' (1972: 4) explanation of his definition of ecology: where organisms are found, how many occur there, and why.
Ecological knowledge such as the quantification of biodiversity and population dynamics have provided a scientific basis for expressing the aims of environmentalism and evaluating its goals and policies. Additionally, a holistic view of nature is stressed in both ecology and environmentalism.

Environmental

Ecology studies the distribution and abundance of living organisms, and the interactions between organisms and their environment. The environment of an organism includes both its habitat, which can be described as the sum of local abiotic factors such as climate and ecology, as well as the other organisms that share its habitat. Ecological systems are studied at several different levels, from individuals and populations to ecosystems and the biosphere. As can be surmised, ecology is a science that draws on several disciplines.
Ethology studies animal behavior (particularly of social animals such as primates and canids), and is sometimes considered a branch of zoology. Ethologists have been particularly concerned with the evolution of behavior and the understanding of behavior in terms of the theory of natural selection. In one sense, the first modern ethologist was Charles Darwin, whose book "The Expression of the Emotions in Man and Animals" influenced many ethologists.
Biogeography studies the spatial distribution of organisms on the Earth, focusing on topics like plate tectonics, climate change, dispersal and migration, and cladistics.
Every living thing interacts with other organisms and its environment. One reason that biological systems can be difficult to study is that so many different interactions with other organisms and the environment are possible, even on the smallest of scales. A microscopic bacterium responding to a local sugar gradient is responding to its environment as much as a lion is responding to its environment when it searches for food in the African savannah. For any given species, behaviors can be co-operative, aggressive, parasitic or symbiotic. Matters become more complex when two or more different species interact in an ecosystem. Studies of this type are the province of ecology.